fulltext.study @t Gmail

Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition

Paper ID Volume ID Publish Year Pages File Format Full-Text
13113 831 2003 8 PDF Available
Title
Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition
Abstract

Construction of biodegradable, three-dimensional scaffolds for tissue engineering has been previously described using a variety of molding and rapid prototyping techniques. In this study, we report and compare two methods for fabricating poly(dl-lactide-co-glycolide) (PLGA) scaffolds with feature sizes of approximately 10–30 μm. The first technique, the pressure assisted microsyringe, is based on the use of a microsyringe that utilizes a computer-controlled, three-axis micropositioner, which allows the control of motor speeds and position. A PLGA solution is deposited from the needle of a syringe by the application of a constant pressure of 20–300 mm Hg, resulting in a controlled polymer deposition. The second technique is based on ‘soft lithographic’ approaches that utilize a poly(dimethylsiloxane) mold. Three variations of the second technique are presented: polymer casting, microfluidic perfusion, and spin coating. Polymer concentration, solvent composition, and mold dimensions influenced the resulting scaffolds as evaluated by light and electron microscopy. As a proof-of-concept for scaffold utility in tissue engineering applications, multilayer structures were formed by thermal lamination, and scaffolds were rendered porous by particulate leaching. These simple methods for forming PLGA scaffolds with microscale features may serve as useful tools to explore structure/function relationships in tissue engineering.

Keywords
Microfabrication; PLGA; Microsyringe; Soft lithography
First Page Preview
Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 24, Issue 14, June 2003, Pages 2533–2540
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us