fulltext.study @t Gmail

A porous polymer scaffold for meniscal lesion repair—A study in dogs

Paper ID Volume ID Publish Year Pages File Format Full-Text
13114 831 2003 8 PDF Available
Title
A porous polymer scaffold for meniscal lesion repair—A study in dogs
Abstract

Meniscal lesions often occur in the avascular area of the meniscus with little chance of spontaneous repair. An access channel in the meniscal tissue can function as an entrance for ingrowing repair tissue from the vascular periphery of the meniscus to the lesion in the avascular zone which again induced healing of the lesion. Implantation of a porous polymer in a full-thickness access channel induced healing. However, a better integration between meniscal tissue and the implant might be achieved with the combination of the newly developed porous polymers and a modified surgical technique. This might improve meniscal lesion healing and the repair of the access channel with neo-meniscal tissue.Longitudinal lesions were created in the avascular part of 24 canine lateral menisci and a partial-thickness access channel was formed to connect the lesion with the meniscal periphery. In 12 menisci, the access channel was left empty (control group), while in the remaining 12 menisci the polymer implant was sutured into the access channel.Repair of the longitudinal lesions was achieved with and without polymer implantation in the partial-thickness access channel. Polymer implants induced fibrous ingrowth with cartilaginous areas, which resembled neo-meniscal tissue. Implantation did not prevent articular cartilage degeneration.

Keywords
Meniscus; Tear; Polyurethane; Dogs
First Page Preview
A porous polymer scaffold for meniscal lesion repair—A study in dogs
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 24, Issue 14, June 2003, Pages 2541–2548
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us