fulltext.study @t Gmail

Swelling behavior of a genetically engineered silk-elastinlike protein polymer hydrogel

Paper ID Volume ID Publish Year Pages File Format Full-Text
13148 834 2002 8 PDF Available
Title
Swelling behavior of a genetically engineered silk-elastinlike protein polymer hydrogel
Abstract

The influence of environmental conditions such as pH, temperature, and ionic strength on the equilibrium swelling ratio of physically crosslinked networks of a genetically engineered silk-elastinlike protein-based copolymer (SELP) with an amino acid repeat sequence of [(GVGVP)4GKGVP(GVGVP)3(GAGAGS)4]12 was investigated. The effects of gelation cure time and initial polymer concentration on the equilibrium swelling ratio and soluble fraction of the hydrogels were also studied. It was found that the soluble fraction linearly correlated with the initial polymer concentration at higher gelation times. Soluble fraction results suggest that final hydrogel water content may be controlled by both initial polymer concentration and gelation time. Equilibrium swelling studies demonstrated that these hydrogels are relatively insensitive to environmental changes such as pH, temperature, and ionic strength. Over the concentration range studied, it was found that an increase in gelation time at 37°C resulted in lower hydrogel weight equilibrium swelling ratios, which corresponds to less soluble polymer released post-gelation. Together, these results have implications for the controlled delivery of bioactive agents from silk-elastinlike hydrogels.

Keywords
Genetically engineered polymers; Drug delivery; Silk-elastinlike; Hydrogels
First Page Preview
Swelling behavior of a genetically engineered silk-elastinlike protein polymer hydrogel
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 23, Issue 21, November 2002, Pages 4203–4210
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us