fulltext.study @t Gmail

Bone attachment to glass-fibre-reinforced composite implant with porous surface

Paper ID Volume ID Publish Year Pages File Format Full-Text
1319 81 2009 8 PDF Available
Title
Bone attachment to glass-fibre-reinforced composite implant with porous surface
Abstract

A method has recently been developed for producing fibre-reinforced composites (FRC) with porous surfaces, intended for use as load-bearing orthopaedic implants. This study focuses on evaluation of the bone-bonding behaviour of FRC implants. Three types of cylindrical implants, i.e. FRC implants with a porous surface, solid polymethyl methacrylate (PMMA) implants and titanium (Ti) implants, were inserted in a transverse direction into the intercondular trabeculous bone area of distal femurs and proximal tibias of New Zealand White rabbits. Animals were sacrificed at 3, 6 and 12 weeks post operation, and push-out tests (n = 5–6 per implant type per time point) were then carried out. At 12 weeks the shear force at the porous FRC–bone interface was significantly higher (283.3 ± 55.3 N) than the shear force at interfaces of solid PMMA/bone (14.4 ± 11.0 N; p < 0.001) and Ti/bone (130.6 ± 22.2 N; p = 0.001). Histological observation revealed new bone growth into the porous surface structure of FRC implants. Solid PMMA and Ti implants were encapsulated mostly with fibrous connective tissue. Finite element analysis (FEA) revealed that porous FRC implants had mechanical properties which could be tailored to smooth the shear stress distribution at the bone–implant interface and reduce the stress-shielding effect.

Keywords
Composite; FEA; Fibre-reinforced; Animal experiment; Orthopedics
First Page Preview
Bone attachment to glass-fibre-reinforced composite implant with porous surface
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 5, Issue 5, June 2009, Pages 1639–1646
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us