fulltext.study @t Gmail

Effects of fluid flow on the in vitro degradation kinetics of biodegradable scaffolds for tissue engineering

Paper ID Volume ID Publish Year Pages File Format Full-Text
13211 842 2000 10 PDF Available
Title
Effects of fluid flow on the in vitro degradation kinetics of biodegradable scaffolds for tissue engineering
Abstract

Scaffolds fabricated from biodegradable polymers are used extensively in the field of tissue engineering. Many of these scaffolds are subjected to fluid flow, either in vivo or in bioreactors ex vivo. The goal of this study was to examine the effects of fluid flow on the degradation characteristics and kinetics of scaffolds in vitro. Scaffolds with different porosity and permeability values were fabricated using a copolymer of polylactic acid and polyglycolic acid. These scaffolds were subjected to degradation in phosphate buffered saline at 37°C for up to 6 weeks under two test conditions: static and flow (250 μl/min). The porosity of the scaffolds decreased up to 2 weeks and then increased, while the elastic modulus first increased and then decreased over the course of the study. The mass and molecular weight of the scaffolds exhibited a steady decrease up to 6 weeks. The results further indicated that lower the porosity and permeability of the scaffolds, the faster their rate of degradation. Additionally, fluid flow decreased the degradation rate significantly. It is possible that the high rates of degradation observed here were due to autocatalysis of the degradation reaction by the acidic degradation products.

Keywords
Polylactic acid; Polyglycolic acid; Flow; Degradation; Scaffold
First Page Preview
Effects of fluid flow on the in vitro degradation kinetics of biodegradable scaffolds for tissue engineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 21, Issue 23, 1 December 2000, Pages 2443–2452
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us