fulltext.study @t Gmail

Nano-scale surface modification of a segmented polyurethane with a phospholipid polymer

Paper ID Volume ID Publish Year Pages File Format Full-Text
13217 843 2004 9 PDF Available
Title
Nano-scale surface modification of a segmented polyurethane with a phospholipid polymer
Abstract

Nano-scale modification of a segmented polyurethane (SPU) with cross-linked 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer was performed to obtain a biocompatible elastomer. To control the domain size and the depth of the modified layer, various compositions of monomers, including MPC, 2-ethylhexyl methacrylate (EHMA), and glycerol 1,3-diglycerolate diacrylate, were examined. SPU film was immersed in the monomer solution and visible light irradiation was applied to initiate polymerization to the SPU film that was held by mica to condense MPC units at the surface. The surfaces of the obtained film were analyzed by X-ray photoelectron spectroscopy and water contact angle measurement. The surface density of MPC units changed with the monomer concentration, and the density was the highest when the ratio between MPC and EHMA was 7:3. In modified SPU films, 6- to 25-nm MPC unit-enriched domains were observed and the density of these domains gradually decreased with depth. The sizes of the domains depended on the MPC composition in the monomer solution. The mechanical properties of the modified films as evaluated by tensile strength measurement under wet conditions were not significantly different from those of SPU. With increase in the existence of MPC unit-enriched domains on the MEG film surface, platelet adhesion and activation were remarkably reduced compared to the SPU film. This nano-scale surface modification may be a useful technique for applying elastic polymer biomaterials.

Keywords
Surface modification; IPN (Interpenetrating polymer network); Polyurethane; Phospholipid polymer; Platelet adhesion
First Page Preview
Nano-scale surface modification of a segmented polyurethane with a phospholipid polymer
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 25, Issue 23, October 2004, Pages 5353–5361
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us