fulltext.study @t Gmail

Chlorhexidine release from an experimental glass ionomer cement

Paper ID Volume ID Publish Year Pages File Format Full-Text
13224 843 2004 9 PDF Available
Title
Chlorhexidine release from an experimental glass ionomer cement
Abstract

Glass ionomer cements (GIC) can potentially be used as matrices for the slow release of active species, as has been shown previously for fluoride ions. This study investigated the use of an experimental GIC as a carrier for the release of chlorhexidine acetate (CHA) at included concentrations ranging from 0.5% to 13.0% of CHA by weight. Release into water was examined using high-performance liquid chromatography. All measurable chlorhexidine was released within 22 h1/2, however this was less than 10% of the total mass incorporated in the specimens. An increased percentage of CHA incorporated into the powder gave an increased release into the surrounding water. The bulk of the CHA was retained within the cement. For comparison, the surface chemistry of a CHA-containing GIC was examined using X-ray photoelectron spectroscopy before and after prolonged immersion in water. This confirmed retention of a large amount of CHA. Spectra after leaching appeared very similar to those from a CHA-free GIC after immersion in a CHA solution. In order to explore the effect of CHA-inclusion on the cement properties, compressive strengths, working and setting times were also measured. In general, compressive strengths were found to be decreased in direct proportion to the quantity of CHA added, while working and setting times increased.

Keywords
Antibacterial; Biocompatibility; Dental cement; Drug release; Glass ionomer
First Page Preview
Chlorhexidine release from an experimental glass ionomer cement
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 25, Issue 23, October 2004, Pages 5423–5431
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us