fulltext.study @t Gmail

Identification and validation of a novel cell-recognition site (KNEED) on the 8th type III domain of fibronectin

Paper ID Volume ID Publish Year Pages File Format Full-Text
13251 846 2002 6 PDF Available
Title
Identification and validation of a novel cell-recognition site (KNEED) on the 8th type III domain of fibronectin
Abstract

Interactions between cell-surface integrins and extracellular matrix proteins underlie a versatile recognition system providing cells with anchorage, traction for migration or matrix remodeling, as well as signals for polarity, differentiation and growth. Short peptide sequences of fibronectin (FN), most notably RGD found on a loop in the 10th type III domain, are effective in promoting cell adhesion when immobilized to a biomaterial scaffold. Additional sequences (e.g. PHSRN) have been shown to act synergistically to enhance cell adhesion and other cellular processes. Using bioinformatics, we identified a candidate cell-binding peptide sequence, KNEED, located on the loop region of the 8th domain of FN that from in vitro studies appears to participate in cell attachment and spreading. Computational analysis revealed that KNEED exhibits both high solvent accessibility and sequence conservation values across FN sequences from seven species. We demonstrate the importance of the KNEED sequence using a solution-phase competitive inhibition assay utilizing soluble peptides. Results indicate that the presence of soluble KNEED peptides inhibits the attachment and spreading of 3T3 balb/c fibroblasts on FN-coated surfaces in a concentration-dependent manner. As more sequence and crystallographic data become available, computational approaches may aid in the identification of new targets for applications where biorecognition plays a key role.

Keywords
Fibronectin; Cell adhesion; Cell spreading; Adhesion peptides
First Page Preview
Identification and validation of a novel cell-recognition site (KNEED) on the 8th type III domain of fibronectin
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 23, Issue 18, September 2002, Pages 3865–3870
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us