fulltext.study @t Gmail

The use of poly(ethylene glycol)-block-poly(lactic acid) derived copolymers for the rapid creation of biomimetic surfaces

Paper ID Volume ID Publish Year Pages File Format Full-Text
13286 848 2003 12 PDF Available
Title
The use of poly(ethylene glycol)-block-poly(lactic acid) derived copolymers for the rapid creation of biomimetic surfaces
Abstract

For many tissue engineering applications biomimetic or bioactive polymers would allow for a more precise control of cell behavior in growing tissues than has so far been possible. For this application recently developed amine reactive diblock copolymers (N-succinimidyl tartrate monoamine poly(ethylene glycol)-block-poly(d,l-lactic acid) [ST-NH-PEGxPLAy]) were investigated concerning their reactivity in binding model substances. Their ability to covalently immobilize proteins on their surfaces was examined using polymer films with amine reactive surfaces. Furthermore, thiol reactive polymers were obtained by attaching N-succinimidyl 3-maleinimido propionate, a thiol reactive linker to monoamine poly(ethylene glycol)-block-poly(d,l-lactic acid) [H2N-PEGxPLAy]. This allowed the immobilization of proteins carrying free thiol groups. The amine and thiol reactive polymers were characterized by 1H-NMR spectroscopy and gel permeation chromatography (GPC). Investigation of glass transitions temperatures using modulated differential scanning calorimetry proved suitability for the fabrication of polymeric scaffolds for tissue engineering applications. The functionality of the polymers was demonstrated by investigating their ability to bind model amines, like the fluorescent dye EDANS. Moreover, insulin and somatostatin were covalently attached to the active linker groups via amine and thiol groups. The polymers will permit covalently attaching different bioactive molecules, such as growth and differentiation factors, with fast and gentle procedures securing their biological activity.

Keywords
Biomimetic; Surface modification; Tissue engineering; Polymer; Poly(lactic acid); Poly(ethylene glycol); Insulin; Linker
First Page Preview
The use of poly(ethylene glycol)-block-poly(lactic acid) derived copolymers for the rapid creation of biomimetic surfaces
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 24, Issue 24, November 2003, Pages 4475–4486
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us