fulltext.study @t Gmail

Diverse cellular and apoptotic responses to variant shapes of UHMWPE particles in a murine model of inflammation

Paper ID Volume ID Publish Year Pages File Format Full-Text
13293 849 2002 9 PDF Available
Title
Diverse cellular and apoptotic responses to variant shapes of UHMWPE particles in a murine model of inflammation
Abstract

The wear of orthopaedic prostheses results in the release of a markedly heterogeneous assortment of particulate debris, with respect to both size and shape. Although particle size has been extensively examined, the role of particle shape in adverse inflammatory reactions to debris remains unclear. Using an in vivo murine model of inflammation, we assessed tissue responses to globular and to elongated ultra-high molecular weight polyethylene (UHMWPE) particles with a similar surface area, and investigated whether inflammation and cellular apoptosis varied with particle shape in the debris–tissue interaction. Histological changes of UHMWPE-stimulated pouch membrane were assessed using a computerized image analysis system. Quantitative real time PCR and ELISA were performed to assess mRNA expression and protein level of the cytokines, and TUNEL assays were conducted to quantify apoptotic cells. The data revealed that elongated particles generated more active inflammatory air pouches, stimulated more severe membrane proliferation and the inflammatory cellular infiltration compared to globular particles. Increased levels of IL-1β and TNFα were detected in the lavage and homogenate of pouches stimulated with elongated particles in comparison to pouches with globular particles, and the apoptotic assay indicated more severe apoptotic changes within the inflammatory membrane provoked with elongated particles. Our results suggest that cellular responses to UHMWPE wear debris are dependent on the shape of the particles.

Keywords
Wear debris; Shape; UHMWPE; Cytokines; Apoptosis
First Page Preview
Diverse cellular and apoptotic responses to variant shapes of UHMWPE particles in a murine model of inflammation
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 23, Issue 17, September 2002, Pages 3535–3543
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us