fulltext.study @t Gmail

Coupling of therapeutic molecules onto surface modified coralline hydroxyapatite

Paper ID Volume ID Publish Year Pages File Format Full-Text
13476 858 2004 8 PDF Available
Title
Coupling of therapeutic molecules onto surface modified coralline hydroxyapatite
Abstract

Surface modification and coupling of therapeutic molecules, tetracycline, onto coralline hydroxyapatite (CHA) and their in vitro evaluations were described in this study. Initially, CHA was graft polymerized with glycidylmethacrylate (GMA) using redox initiators and subsequently coupled to tetracycline through epoxy groups. The CHA grafted with polyGMA (CHA-g-PGMA) was characterized by Fourier transform infrared spectroscopy and powder X-ray diffraction (XRD) for proof of grafting. The absorption peaks pertaining to epoxy and ester carbonyl groups were observed for the graft polymer due to PGMA grafting. The XRD results signified that there was no secondary phase in the apatite lattice and crystallinity was also not affected by grafting, which suggested that the PGMA chains were grafted only on the surface of CHA. Drug loading and releasing was evaluated and found that CHA-g-PGMA exhibited higher loading efficiency than CHA. The in vitro release of tetracycline was performed in phosphate buffered saline under physiological condition and the release profiles showed that the tetracycline-containing graft polymer releases the drug for prolonged period as compared to CHA. Based on the experimental results, CHA-g-PGMA appears to be a promising biomaterial for drug delivery.

Keywords
Hydroxyapatite; Polyglycidyl methacrylate; Surface grafting; X-ray diffraction; Drug delivery; In vitro test
First Page Preview
Coupling of therapeutic molecules onto surface modified coralline hydroxyapatite
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 25, Issue 15, July 2004, Pages 3073–3080
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us