fulltext.study @t Gmail

The effects of cross-linking of collagen-glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis

Paper ID Volume ID Publish Year Pages File Format Full-Text
13537 876 2001 10 PDF Available
Title
The effects of cross-linking of collagen-glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis
Abstract

The healing of articular cartilage defects may be improved by the use of implantable three-dimensional matrices. The present study investigated the effects of four cross-linking methods on the compressive stiffness of collagen-glycosaminoglycan (CG) matrices and the interaction between adult canine articular chondrocytes and the matrix: dehydrothermal treatment (DHT), ultraviolet irradiation (UV), glutaraldehyde treatment (GTA), and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC). The degree and kinetics of chondrocyte-mediated contraction, chondrocyte proliferation, and protein and glycosaminoglycan synthesis were evaluated over a four-week period in vitro. Cell-mediated contraction of the matrices varied with cross-linking: the most compliant DHT and UV matrices contracted the most (60% reduction in matrix diameter) and stiffest EDAC matrices contracted the least (30% reduction in matrix diameter). All cross-linking protocols permitted cell proliferation and matrix synthesis as measured by DNA content and radiolabeled sulfate and proline incorporation, respectively. During the first week in culture, a lower level of proliferation was seen in the GTA matrices but over the four-week culture period, the GTA and EDAC matrices provided for the greatest cell proliferation. On day 2, there was a significantly lower rate of 3H-proline incorporation in the GTA matrices (p<0.003) although at later time points, the EDAC and GTA matrices exhibited the highest levels of matrix synthesis. With regard to cartilage-specific matrix molecule synthesis, immunohistochemistry revealed a greater amount of type II collagen in DHT and UV matrices at the early time points. These findings serve as a foundation for future studies of tissue engineering of articular cartilage and the association of chondrocyte contraction and the processes of mitosis and biosynthesis.

Keywords
Cross-linking; Tissue engineering; Chondrocytes; Collagen–GAG matrices
First Page Preview
The effects of cross-linking of collagen-glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 22, Issue 23, December 2001, Pages 3145–3154
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us