fulltext.study @t Gmail

Rapid isothermal substrate microfabrication of a biocompatible thermoplastic elastomer for cellular contact guidance

Paper ID Volume ID Publish Year Pages File Format Full-Text
1356 82 2011 7 PDF Available
Title
Rapid isothermal substrate microfabrication of a biocompatible thermoplastic elastomer for cellular contact guidance
Abstract

The use of microstructured substrates to study and influence cell orientation, which plays an important role in tissue functionality, has been of great interest lately. Silicon and poly(dimethylsiloxane) substrates have typically been used, but long processing times and exogenous protein surface coating, required to enhance cell viability, limit their use as large-scale platforms. There is thus a need for a non-biodegradable biocompatible substrate that allows rapid and low cost microfabrication. In this paper a styrene–(ethylene/butylene)–styrene block co-polymer (SEBS) microstructured by a rapid replication technique using low pressure an isothermal hot embossing approach has been demonstrated. SEBS substrates were treated with oxygen plasma to enhance cell adhesion and sterilized using ethylene oxide gas. While cell adhesion to and proliferation on these substrates was as good as on tissue culture polystyrene, cellular alignment on microstructured SEBS was also very high (97.7 ± 0.5%) when calculated within a 10° angle variation from the longitudinal axis. Furthermore, tissue sheets on microstructured SEBS have been produced and exhibited cellular alignment within the engineered tissue. In addition, these results were obtained without coating the material with exogenous proteins. Such substrates should be helpful in the culture of tissue engineered substitutes with an intrinsic orientation and to elucidate questions in cell biology.

Keywords
Cell culture; Cell proliferation; Microstructure; Elastomer; Smooth muscle cell
First Page Preview
Rapid isothermal substrate microfabrication of a biocompatible thermoplastic elastomer for cellular contact guidance
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 7, Issue 6, June 2011, Pages 2492–2498
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us