fulltext.study @t Gmail

Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering

Paper ID Volume ID Publish Year Pages File Format Full-Text
13573 881 2001 7 PDF Available
Title
Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering
Abstract

Photopolymerizable polyethylene glycol (PEG) derivatives have been investigated as hydrogel tissue engineering scaffolds. These materials have been modified with bioactive peptides in order to create materials that mimic some of the properties of the natural extracellular matrix (ECM). The PEG derivatives with proteolytically degradable peptides in their backbone have been used to form hydrogels that are degraded by enzymes involved in cell migration, such as collagenase and elastase. Cell adhesive peptides, such as the peptide RGD, have been grafted into photopolymerized hydrogels to achieve biospecific cell adhesion. Cells seeded homogeneously in the hydrogels during photopolymerization remain viable, proliferate, and produce ECM proteins. Cells can also migrate through hydrogels that contain both proteolytically degradable and cell adhesive peptides. The biological activities of these materials can be tailored to meet the requirements of a given tissue engineering application by creating a mixture of various bioactive PEG derivatives prior to photopolymerization.

Keywords
Biomimetic polymers; Hydrogels; Photopolymerization; Proteolysis; Cell migration
First Page Preview
Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 22, Issue 22, 15 November 2001, Pages 3045–3051
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us