fulltext.study @t Gmail

Bisphosphonate derivatized polyurethanes resist calcification

Paper ID Volume ID Publish Year Pages File Format Full-Text
13641 886 2001 11 PDF Available
Title
Bisphosphonate derivatized polyurethanes resist calcification
Abstract

Calcification of polyurethane cardiovascular implants is an important disease process that has the potential to compromise the long-term function of devices such as polymer heart valves and ventricular assist systems. In this study we report the successful formulation and characterization of bisphosphonate-derivatized polyurethanes, hypothesized to resist implant calcification based on the pharmacologic activity of the immobilized bisphosphonate. Fully polymerized polyurethanes (a polyurea–polyurethane and a polycarbonate polyurethane) were modified (post-polymerization) with bromoalkylation of the hard segments followed by attachment of a bisphosphonate group at the bromine site. These bisphosphonate-polyurethanes resisted calcification in rat 60 day subdermal implants compared to nonmodified control polyurethane implants, that calcify. Bisphosphonates-modified polyurethanes were also studied in circulatory implants using a pulmonary valve cusp replacement model in sheep. Polyurethane cusps modified with bisphosphonate did not calcify in 90 day implants, compared to control polyurethane cusps implants, that demonstrated nodular surface oriented calcific deposits. It is concluded that bisphosphonate modified polyurethanes resist calcification both in subdermal implants and in the circulation. This novel biomaterial approach offers great promise for long-term blood stream implantation with calcification resistance.

Keywords
Heart valves; Prostheses; Mineralization; Biomaterials
First Page Preview
Bisphosphonate derivatized polyurethanes resist calcification
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 22, Issue 19, 1 October 2001, Pages 2683–2693
Authors
, , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us