fulltext.study @t Gmail

Mass changes and dissolution of platinum during electrical stimulation in artificial perilymph solution

Paper ID Volume ID Publish Year Pages File Format Full-Text
13652 888 2000 6 PDF Available
Title
Mass changes and dissolution of platinum during electrical stimulation in artificial perilymph solution
Abstract

The electrochemistry of platinum electrodes in artificial perilymph solution subjected to cyclic and steady-state potentials was studied by a quartz crystal electrochemical microbalance and by analysis of electrolyte for dissolved platinum. The effect of amino acid adsorption appears to be one of blocking sites for platinum oxidation and oxide reduction, a process in which the amino acid competes with chloride from phosphate-buffered saline. For amino acids such as cysteine, which are known to interact strongly with platinum, the voltammograms became nearly featureless and only a small change in mass was observed during cycling of the potential. There were no mass changes of an electrode in solution containing human serum albumen, but its presence did inhibit dissolution of platinum. The overall magnitudes of dissolved platinum found in the buffered solutions were low, remaining below 5 ppb in most cases. Dissolution was greatest in solutions containing high concentrations of cysteine. Extrapolation of the results to implanted auditory prosthesis electrodes indicated that platinum dissolution would not lead to toxic concentrations in the body.

Keywords
Auditory prosthesis; Platinum electrochemistry; Corrosion; Electrochemical quartz crystal microbalance
First Page Preview
Mass changes and dissolution of platinum during electrical stimulation in artificial perilymph solution
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 21, Issue 21, 1 November 2000, Pages 2177–2182
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us