fulltext.study @t Gmail

Topographical control of human neutrophil motility on micropatterned materials with various surface chemistry

Paper ID Volume ID Publish Year Pages File Format Full-Text
13672 889 2002 11 PDF Available
Title
Topographical control of human neutrophil motility on micropatterned materials with various surface chemistry
Abstract

Controlling cell responses to an implantable material is essential to tissue engineering. Because the surface is in direct contact with cells, both chemical and topographical properties of a material surface can play a crucial role. In this study, parallel ridges/grooves were micropatterned on glass surfaces using photosensitive polyimide to create transparent substrates. The migratory behavior of live human neutrophils on the patterned surfaces was observed using a light microscope with transmitted light source. The width (2 μm) and length (400 μm) of the ridges were kept constant. The height (5 or 3 μm) and the repeat spacing (6–14 μm) of the ridges were systematically changed to investigate the effect of microgeometry on neutrophil migration. In addition, the effect of surface chemistry on neutrophil migration was studied by deposition of a thin layer of “inert”, biocompatible metal such as Au–Pd alloy and titanium on patterned substrates. More than 95% of neutrophils moved in the direction of the long axis of ridges/grooves regardless of the topographical geometry and chemistry, consistent with a phenomenon termed “contact guidance”. Therefore, cell migration was characterized using a one-dimensional persistent random walk. The rate of cell movement was strongly dependent on the topographical microgeometry of the ridges. The random motility coefficient μ, 9.8×10−9 cm2/s, was the greatest at a ridge height of 5 μm and spacing of 10 μm, about 10 times faster than on smooth glass surface. The Au–Pd coating did not change neutrophil migratory behavior on patterned surfaces, whereas titanium decreased cell motility substantially. The results of this study suggest that optimization of both surface chemistry and topography may be important when designing biomaterials for tissue engineering. In addition, parallel ridges/grooves can be used to control the direction and rate of cell migration on the surface.

First Page Preview
Topographical control of human neutrophil motility on micropatterned materials with various surface chemistry
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 23, Issue 15, August 2002, Pages 3215–3225
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us