fulltext.study @t Gmail

Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering

Paper ID Volume ID Publish Year Pages File Format Full-Text
13712 894 2002 9 PDF Available
Title
Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering
Abstract

Poly(ethylene glycol) (PEG) hydrogels were investigated as encapsulation matrices for osteoblasts to assess their applicability in promoting bone tissue engineering. Non-adhesive hydrogels were modified with adhesive Arg-Gly-Asp (RGD) peptide sequences to facilitate the adhesion, spreading, and, consequently, cytoskeletal organization of rat calvarial osteoblasts. When attached to hydrogel surfaces, the density and area of osteoblasts attached were dramatically different between modified and unmodified hydrogels. A concentration dependence of RGD groups was observed, with increased osteoblast attachment and spreading with higher RGD concentrations, and cytoskeleton organization was seen with only the highest peptide density. A majority of the osteoblasts survived the photoencapsulation process when gels were formed with 10% macromer, but a decrease in osteoblast viability of ∼25% and 38% was seen after 1 day of in vitro culture when the macromer concentration was increased to 20 and 30 wt%, respectively. There was no statistical difference in cell viability when peptides were added to the network. Finally, mineral deposits were seen in all hydrogels after 4 weeks of in vitro culture, but a significant increase in mineralization was observed upon introduction of adhesive peptides throughout the network.

Keywords
Photoencapsulation; RGD; Bone tissue engineering; Injectable; Osteoblasts
First Page Preview
Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 23, Issue 22, November 2002, Pages 4315–4323
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us