fulltext.study @t Gmail

Nucleation of biomimetic Ca–P coatings on Ti6Al4V from a SBF×5 solution: influence of magnesium

Paper ID Volume ID Publish Year Pages File Format Full-Text
13772 900 2002 10 PDF Available
Title
Nucleation of biomimetic Ca–P coatings on Ti6Al4V from a SBF×5 solution: influence of magnesium
Abstract

Biomimetic Calcium–Phosphate (Ca–P) coatings were applied by using 5 times concentrated Simulated Body Fluid (SBF×5) using Carbon Dioxide gas. This process allows the deposition of a uniform Ca–P coating within 24 h. A previous study of our process emphasized the importance of hydrogenocarbonate ions (HCO3−), a crystal growth inhibitor. The aim of the present study was to investigate the role of the other crystal growth inhibitor present in SBF×5, Magnesium (Mg2+), on the Ca–P coating formation. Several SBF×5 solutions were prepared with various Mg2+ and HCO3− contents. No Ca–P deposits were detected on Ti6Al4V substrate soaked for 24 h in a Mg-free SBF×5 solution, whereas by increasing HCO3− content in a Mg-free SBF×5 solution, a Ca–P coating developed on Ti6Al4V substrate. Therefore, it appeared that Mg2+ has a stronger inhibitory effect on apatite crystal growth than HCO3−. Nevertheless, Mg2+ plays also another important role as suggested by depth profile X-ray Photoelectron Spectroscopy (XPS) of the Ca–P coating obtained from SBF×5 solution. Ca2+ and Mg2+ contents increased significantly at the titanium/coating interface. Therefore, Ca2+ and Mg2+ initiated Ca–P coating from SBF×5 solution. The relatively high interfacial concentration in Mg2+ favors heterogeneous nucleation of tiny Ca–P globules onto the substrate. So physical adhesion is enhanced at the early stage of the coating formation.

Keywords
Biomimetic; Calcium–Phosphate; Coating; Carbon dioxide; Magnesium; Titanium
First Page Preview
Nucleation of biomimetic Ca–P coatings on Ti6Al4V from a SBF×5 solution: influence of magnesium
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 23, Issue 10, May 2002, Pages 2211–2220
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us