fulltext.study @t Gmail

Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies

Paper ID Volume ID Publish Year Pages File Format Full-Text
138 11 2016 10 PDF Available
Title
Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies
Abstract

Carbon nanotubes (CNTs) were aligned in gelatin methacryloyl (GelMA) hydrogels using dielectrophoresis approach. Mouse embryoid bodies (EBs) were cultured in the microwells fabricated on the aligned CNT-hydrogel scaffolds. The GelMA-dielectrophoretically aligned CNT hydrogels enhanced the cardiac differentiation of the EBs compared with the pure GelMA and GelMA-random CNT hydrogels. This result was confirmed by Troponin-T immunostaining, the expression of cardiac genes (i.e., Tnnt2, Nkx2-5, and Actc1), and beating analysis of the EBs. The effect on EB properties was significantly enhanced by applying an electrical pulse stimulation (frequency, 1 Hz; voltage, 3 V; duration, 10 ms) to the EBs for two continuous days. Taken together, the fabricated hybrid hydrogel-aligned CNT scaffolds with tunable mechanical and electrical characteristics offer an efficient and controllable platform for electrically induced differentiation and stimulation of stem cells for potential tissue regeneration and cell therapy applications.Statement of significanceDielectrophoresis approach was used to rapidly align carbon nanotubes (CNTs) in gelatin methacryloyl (GelMA) hydrogels resulting in hybrid GelMA-CNT hydrogels with tunable and anisotropic electrical and mechanical properties. The GelMA-aligned CNT hydrogels may be used to apply accurate and controllable electrical pulses to cell and tissue constructs and thereby regulating their behavior and function. In this work, it was demonstrated that the GelMA hydrogels containing the aligned CNTs had superior performance in cardiac differentiation of stem cells upon applying electrical stimulation in contrast with control gels. Due to broad use of electrical stimulation in tissue engineering and stem cell differentiation, it is envisioned that the GelMA-aligned CNT hydrogels would find wide applications in tissue regeneration and stem cell therapy.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (163 K)Download as PowerPoint slide

Keywords
Carbon nanotubes; Cardiac differentiation; Electrical stimulation; Embryoid body; Hydrogel
First Page Preview
Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 31, February 2016, Pages 134–143
Authors
, , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us