fulltext.study @t Gmail

Linkage of chondroitin-sulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro

Paper ID Volume ID Publish Year Pages File Format Full-Text
13803 909 2001 11 PDF Available
Title
Linkage of chondroitin-sulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro
Abstract

An increasing amount of interest is focused on the potential use of tissue-engineered articular cartilage implants, for repair of defects in the joint surface. In this perspective, various biodegradable scaffolds have been evaluated as a vehicle to deliver chondrocytes into a cartilage defect. This cell–matrix implant should eventually promote regeneration of the traumatized articular joint surface with hyaline cartilage. Successful regeneration can only be achieved with such a tissue-engineered cartilage implant if the seeded cells reveal an appropriate proliferation rate in the biodegradable scaffold together with the production of a new cartilage-specific extracellular matrix. These metabolic parameters can be influenced by the biochemical composition of a cell-delivery scaffold. Further elucidation of specific cell–matrix interactions is important to define the optimal biochemical composition of a cell-delivery vehicle for cartilage repair. In this in vitro study, we investigated the effect of the presence of cartilage-specific glycosaminoglycans in a type I collagen scaffold on the metabolic activity of seeded chondrocytes. Isolated bovine chondrocytes were cultured in porous type I collagen matrices in the presence and absence of covalently attached chondroitin sulfate (CS) up to 14 days. CS did indeed influence the bioactivity of the seeded chondrocytes. Cell proliferation and the total amount of proteoglycans retained in the matrix, were significantly higher (p<0.001) in type I collagen scaffolds with CS. Light microscopy showed the formation of a more dense cartilaginous layer at the matrix periphery. Scanning electron microscopy revealed an almost complete surfacing of the initially porous surface of both matrices. Histology and reverse transcriptase PCR for various proteoglycan subtypes suggested a good preservation of the chondrocytic phenotype of the seeded cells during culture. The stimulatory potential of CS on both the cell-proliferation and matrix retention, turns this GAG into an interesting biochemical component of a cell-delivery scaffold for use in tissue-engineering articular cartilage.

Keywords
Type I collagen; Scaffold; Chondrocyte; Tissue engineering
First Page Preview
Linkage of chondroitin-sulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 22, Issue 17, September 2001, Pages 2359–2369
Authors
, , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us