fulltext.study @t Gmail

An electron microscopical study on the growth of TiO2–Ag antibacterial coatings on Ti6Al7Nb biomedical alloy

Paper ID Volume ID Publish Year Pages File Format Full-Text
1385 82 2011 7 PDF Available
Title
An electron microscopical study on the growth of TiO2–Ag antibacterial coatings on Ti6Al7Nb biomedical alloy
Abstract

This research was aimed at investigating the growth mechanism of TiO2–Ag antibacterial coatings during plasma electrolytic oxidation (PEO) of Ti6Al7Nb biomedical alloy in an electrolyte based on calcium acetate/calcium glycerophosphate bearing Ag nanoparticles. The focus was on the mechanism of incorporation of Ag nanoparticles, their distribution and chemical composition within the porous coatings using high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) imaging techniques combined with energy dispersive X-ray spectroscopy (EDX) for chemical analyses. The PEO coatings were grown using different oxidation times, 10, 30, 60, 90, 120, 180, 240 and 300 s. The electron microscopy results confirmed the formation of a porous coating with incorporated Ag nanoparticles from the initial stages of oxidation (i.e. 10 s), with further Ag incorporation as the PEO process was continued for longer durations. The Ag nanoparticles were embedded in the dense oxide layer, fused into the pore walls and on the surface of the coatings without any change in their morphology or chemistry as detected by HRTEM, SEM and EDX. Ag seems to be delivered to the sites of coating growth (where dielectric breakdown occurs) through different transport pathways, i.e. open pores, cracks and short-circuit channels.

Keywords
Silver nanoparticles; Antibacterial coatings; Titanium dioxide; Plasma electrolytic oxidation; Growth mechanism
First Page Preview
An electron microscopical study on the growth of TiO2–Ag antibacterial coatings on Ti6Al7Nb biomedical alloy
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 7, Issue 6, June 2011, Pages 2751–2757
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering