fulltext.study @t Gmail

Passive film on orthopaedic TiAlV alloy formed in physiological solution investigated by X-ray photoelectron spectroscopy

Paper ID Volume ID Publish Year Pages File Format Full-Text
13898 940 2000 11 PDF Available
Title
Passive film on orthopaedic TiAlV alloy formed in physiological solution investigated by X-ray photoelectron spectroscopy
Abstract

The passive film formed by electrochemical oxidation on TiAlV alloy in physiological solution was studied using X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The alloy was polarised at different oxidation potentials in the electrochemical chamber attached to the spectrometer. Thus the composition of the layer formed by oxidation was analysed by XPS without prior exposure to air (quasi-in situ). The oxide layer was predominantly TiO2, which contained a small amount of suboxides TiO and Ti2O3 closer to the inner metal/oxide interface. With increasing potential the content of Ti4+ species increased and that of Ti3+ and Ti2+ decreased. The content of titanium in TiO2 was lower than theoretically predicted due to the incorporation of Al2O3 in TiO2 matrix. Vanadium oxide was not identified by XPS. Angular resolved XPS analysis confirmed that Al2O3 is located mainly at the outer oxide/solution interface. The thickness of the oxide layer was dependent on the oxidation potential and after oxidation at 2.5 V reached 9 nm. EIS measurements were used to in situ characterise electronic properties of passive films over seven decades of frequency. A link between electronic, electrochemical and physiochemical properties was established.

Keywords
Ti alloy; Electrochemical oxidation; Oxide film; XPS; EIS
First Page Preview
Passive film on orthopaedic TiAlV alloy formed in physiological solution investigated by X-ray photoelectron spectroscopy
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 21, Issue 20, October 2000, Pages 2103–2113
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us