fulltext.study @t Gmail

Development of the cytodetachment technique to quantify mechanical adhesiveness of the single cell

Paper ID Volume ID Publish Year Pages File Format Full-Text
13934 974 1999 11 PDF Available
Title
Development of the cytodetachment technique to quantify mechanical adhesiveness of the single cell
Abstract

Adhesion of cells to biomaterials or to components of the extracellular matrix is fundamental in many tissue engineering and biotechnological processes, as well as in normal development and tissue maintenance. Many cells on adhesive molecules will spread and form an organized actin cytoskeleton and complex transmembrane signaling regions called focal adhesions. Focal adhesions appear to function as both signaling and stabilizing components of normal adherent cell activity. To better understand adhesion formations between cells and their underlying substrata, we have designed, developed, and utilized a novel `cytodetachment’ methodology to quantify the force required to displace attached cells. We allowed bovine articular chondrocytes to attach and spread on a substratum of either fibronectin, bovine serum albumin, or standard microscope glass. The cytodetacher was then employed to displace the cells from the substratum. Our results demonstrate that a significantly greater force is required to detach cells from fibronectin versus the two other substrata, suggesting that a cell's actin cytoskeleton and perhaps focal adhesions contribute significantly to its mechanical adhesiveness. The cytodetacher allows us to directly measure the force required for cell detachment from a substratum and to indirectly determine the ability of different substrata to support cell adhesion.

Keywords
Cell mechanics; Cytodetachment; Single cell; Cell adhesion; Focal adhesions
First Page Preview
Development of the cytodetachment technique to quantify mechanical adhesiveness of the single cell
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 20, Issues 23–24, December 1999, Pages 2405–2415
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us