fulltext.study @t Gmail

A functional polymer designed for bone tissue engineering

Paper ID Volume ID Publish Year Pages File Format Full-Text
1450 84 2012 9 PDF Available
A functional polymer designed for bone tissue engineering

Most synthetic polymers lack biological and chemical functionalities. This lack of functionality restricts the polymer properties and prevents them from controlling specific cell–material interactions. Polymers with free functional groups allow facile modifications, which can be used to control the biointerface. Here we created a functionalizable polymer, poly(fumaroyl bioxirane) maleate (PFM), with three free functional groups – hydroxyl, carboxyl and alkenyl – for bone tissue engineering. PFM was readily synthesized in two steps. PFM showed strain-dependent moduli with mechanical strength approaching native bones. PFM supported the adhesion, spreading, proliferation, and maturity of rat calvarial osteoblasts. The alkaline phosphatase activity of osteoblasts on PFM was significantly higher than that on tissue-culture-treated polystyrene in vitro. The physical, mechanical, and biological properties of PFM can be modulated by various functionalizations to explore methods to improve bone tissue engineering and regenerative medicine in general.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (193 K)Download as PowerPoint slide

Bone regeneration; Functional polymer; Osteoblast; Polyester
First Page Preview
A functional polymer designed for bone tissue engineering
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 8, Issue 2, February 2012, Pages 502–510
, , , ,
Physical Sciences and Engineering Chemical Engineering Bioengineering