fulltext.study @t Gmail

Biomass–oxygen gasification in a high-temperature entrained-flow gasifier

Paper ID Volume ID Publish Year Pages File Format Full-Text
14734 1244 2009 6 PDF Available
Title
Biomass–oxygen gasification in a high-temperature entrained-flow gasifier
Abstract

The technology associated with indirect biomass liquefaction is currently arousing increased attention, as it could ensure a supply of transportation fuels and reduce the use of petroleum. The characteristics of biomass–oxygen gasification in a bench-scale laminar entrained-flow gasifier were studied in the paper. Experiments were carried out to investigate the influence of some key factors, including reaction temperature, residence time and oxygen/biomass ratio, on the gasification. The results indicated that higher temperature favored H2 and CO production. Cold gas efficiency was improved by > 10% when the temperature was increased from 1000 to 1400 °C. The carbon conversion increased and the syngas quality was improved with increasing residence time. A shorter residence resulted in incomplete gasification. An optimal residence time of 1.6 s was identified in this study. The introduction of oxygen to the gasifier strengthened the gasification and improved the carbon conversion, but lowered the lower heating value and the H2/CO ratio of the syngas. The optimal oxygen/biomass ratio in this study was 0.4. The results of this study will help to improve our understanding of syngas production by biomass high-temperature gasification.

Keywords
Biomass; Syngas; Entrained-flow gasification; Oxygen
First Page Preview
Biomass–oxygen gasification in a high-temperature entrained-flow gasifier
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biotechnology Advances - Volume 27, Issue 5, September–October 2009, Pages 606–611
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us