fulltext.study @t Gmail

Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications

Paper ID Volume ID Publish Year Pages File Format Full-Text
14739 1244 2009 15 PDF Available
Title
Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications
Abstract

Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C5H10O2) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C7H16 and C7H8O (and then, by mp2d, C4H6O2 and propyne, C3H4) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C19H34O2 (or C19H36O2). The main fuel vapor thermal properties were taken as those of methyl palmitate C19H36O2 in the NASA polynomial form of the Burcat database. The special global reaction was introduced to “crack” the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NOx formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions.

Keywords
Bio-diesel; Comprehensive chemical kinetic mechanisms; Ignition-delay times; Emission formations
First Page Preview
Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biotechnology Advances - Volume 27, Issue 5, September–October 2009, Pages 641–655
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us