fulltext.study @t Gmail

Vaccine protocols optimization: In silico experiences

Paper ID Volume ID Publish Year Pages File Format Full-Text
14761 1246 2010 12 PDF Available
Title
Vaccine protocols optimization: In silico experiences
Abstract

Vaccines represent a special class of drugs, capable of stimulating immune system responses against pathogens and tumors. Vaccine development is a lengthy process that includes expensive laboratory experiments in order to assess safety and effectiveness. As the efficacy of a vaccine was demonstrated by biological/chemical investigations and pre-clinical studies, then a major problem is represented by the search for an optimal vaccination dosage. Optimality here assumes the meaning of assuring a high degree of efficacy and safety (lack of toxic or side effects). In lack of quantitative methods, this is usually achieved by a consensus technique, a public statement on a particular aspect of medical knowledge available at the time it was written, and that is generally agreed upon as the evidence-based, state-of-the-art (or state-of-science) knowledge by a representative group of experts in that area. In this article, we focus on the difficult problem of the search for an optimal vaccination dosage in the field of tumor immunology, that is a major issue in biomedical research. This, indeed, represents a first step toward a personalized medicine approach.

Keywords
Vaccines; Dosage optimization; Computational models; Personalized medicine; Immunology; Drug discovery
First Page Preview
Vaccine protocols optimization: In silico experiences
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biotechnology Advances - Volume 28, Issue 1, January–February 2010, Pages 82–93
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us