fulltext.study @t Gmail

Effective inhibition of the early copper ion burst release with ultra-fine grained copper and single crystal copper for intrauterine device application

Paper ID Volume ID Publish Year Pages File Format Full-Text
1492 84 2012 11 PDF Available
Title
Effective inhibition of the early copper ion burst release with ultra-fine grained copper and single crystal copper for intrauterine device application
Abstract

To solve the main problems of existing coarse grained copper (CG Cu) intrauterine devices (IUD)—namely burst release and a low transfer efficiency of the cupric ions during usage—ultra-fine grained copper (UFG Cu) and single crystal copper (SC Cu) have been investigated as potential substitutes. Their corrosion properties with CG Cu as a control have been studied in simulated uterine fluid (SUF) under different conditions using electrochemical measurement methods. Long-term immersion of UFG Cu, SC Cu and CG Cu samples in SUF at 37 °C have been studied for 300 days. A lower copper ion burst release and a higher efficiency release of cupric ions were observed for UFG Cu and SC Cu compared with CG Cu in the first month of immersion and 2 months later. The respective corrosion mechanisms for UFG Cu, SC Cu and CG Cu in SUF are proposed. In vitro biocompatibility tests show a better cellular response to UFG Cu and SC Cu than CG Cu. In terms of instantaneous corrosion behavior, long-term corrosion performance and in vitro biocompatibility, the three pure copper materials follow the order: UFG Cu > SC Cu > CG Cu, which indicates that UFG Cu could be the most suitable candidate material for intrauterine devices.

Keywords
Copper; Corrosion; Metal ion release; Biocompatibility; In vitro test
First Page Preview
Effective inhibition of the early copper ion burst release with ultra-fine grained copper and single crystal copper for intrauterine device application
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 8, Issue 2, February 2012, Pages 886–896
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us