fulltext.study @t Gmail

Composite fibrous biomaterials for tissue engineering obtained using a supercritical CO2 antisolvent process

Paper ID Volume ID Publish Year Pages File Format Full-Text
1512 85 2009 10 PDF Available
Title
Composite fibrous biomaterials for tissue engineering obtained using a supercritical CO2 antisolvent process
Abstract

Several techniques have been proposed for producing porous structures or scaffolds for tissue engineering but, as yet, with no optimal solution. With regard to this topic, this paper focuses on the preparation of biocompatible nanometric filler–polymer composites organized in a network of fibers. Titanium dioxide (TiO2) or hydroxyapatite (HAP) nanopowders as the guest particles and poly(lactic acid) (L-PLA) or the blend poly(methylmethacrylate)/poly(ε-caprolactone) (PMMA/PCL) as the polymer carrier were selected as model systems for this purpose. A supercritical antisolvent technique was used to produce the composites. In the process developed, the non-soluble particulate filler was suspended in a polymer solution, and both components were sprayed simultaneously into supercritical carbon dioxide (scCO2). Using this technique, polymeric matrices were loaded with ∼10–20 wt.% of inorganic phase distributed throughout the composite. Two different hybrid materials were prepared: a PMMA/PCL + TiO2 system where either fibers or microparticles were prepared by varying the molecular weight of the used PMMA; and fibers in the case of L-PLA + HAP system. After further post-processing in a three-dimensional network, these nanofibers can potentially be used as scaffolds for tissue engineering.

Keywords
Supercritical CO2; Nanocomposite; Fibrous tissue; Scaffold; Bone tissue engineering
First Page Preview
Composite fibrous biomaterials for tissue engineering obtained using a supercritical CO2 antisolvent process
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 5, Issue 4, May 2009, Pages 1094–1103
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us