fulltext.study @t Gmail

Improved binary PSO for feature selection using gene expression data

Paper ID Volume ID Publish Year Pages File Format Full-Text
15529 1421 2008 10 PDF Available
Title
Improved binary PSO for feature selection using gene expression data
Abstract

Gene expression profiles, which represent the state of a cell at a molecular level, have great potential as a medical diagnosis tool. Compared to the number of genes involved, available training data sets generally have a fairly small sample size in cancer type classification. These training data limitations constitute a challenge to certain classification methodologies. A reliable selection method for genes relevant for sample classification is needed in order to speed up the processing rate, decrease the predictive error rate, and to avoid incomprehensibility due to the large number of genes investigated. Improved binary particle swarm optimization (IBPSO) is used in this study to implement feature selection, and the K-nearest neighbor (K-NN) method serves as an evaluator of the IBPSO for gene expression data classification problems. Experimental results show that this method effectively simplifies feature selection and reduces the total number of features needed. The classification accuracy obtained by the proposed method has the highest classification accuracy in nine of the 11 gene expression data test problems, and is comparative to the classification accuracy of the two other test problems, as compared to the best results previously published.

Keywords
Improved binary particle swarm optimization; Feature selection; Gene expression data
First Page Preview
Improved binary PSO for feature selection using gene expression data
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Computational Biology and Chemistry - Volume 32, Issue 1, February 2008, Pages 29–38
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us