fulltext.study @t Gmail

Nanobiocatalytic assemblies for artificial photosynthesis

Paper ID Volume ID Publish Year Pages File Format Full-Text
15615 42462 2014 9 PDF Available
Title
Nanobiocatalytic assemblies for artificial photosynthesis
Abstract

•We describe key principles and issues in the design of nanobiocatalytic assemblies for artificial photosynthesis.•Recent research outcomes in the development of nanobiocatalytic assemblies mimicking natural photosystems are highlighted.•Current issues in biocatalytic artificial photosynthesis and future perspectives are briefly discussed.

Natural photosynthesis, a solar-to-chemical energy conversion process, occurs through a series of photo-induced electron transfer reactions in nanoscale architectures that contain light-harvesting complexes, protein-metal clusters, and many redox biocatalysts. Artificial photosynthesis in nanobiocatalytic assemblies aims to reconstruct man-made photosensitizers, electron mediators, electron donors, and redox enzymes for solar synthesis of valuable chemicals through visible light-driven cofactor regeneration. The key requirement in the design of biocatalyzed artificial photosynthetic process is an efficient and forward electron transfer between each photosynthetic component. This review describes basic principles in combining redox biocatalysis with photocatalysis, and highlights recent research outcomes in the development of nanobiocatalytic assemblies that can mimic natural photosystems I and II, respectively. Current issues in biocatalyzed artificial photosynthesis and future perspectives will be briefly discussed.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (164 K)Download as PowerPoint slide

First Page Preview
Nanobiocatalytic assemblies for artificial photosynthesis
Publisher
Database: Elsevier - ScienceDirect
Journal: Current Opinion in Biotechnology - Volume 28, August 2014, Pages 1–9
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering