fulltext.study @t Gmail

Brushite–collagen composites for bone regeneration

Paper ID Volume ID Publish Year Pages File Format Full-Text
1563 86 2008 7 PDF Available
Title
Brushite–collagen composites for bone regeneration
Abstract

Brushite-based biomaterials are of special interest in bone regeneration due to their biocompatibility and biodegradability; on the other hand, collagen is a well-known osteoconductive biomaterial. In the present study a new brushite–collagen composite biomaterial is reported. This new biomaterial was prepared by combining citric acid/collagen type I solutions with a brushite cement powder. The obtained biomaterial was a cement paste, with improved handling properties. The effect of collagen on the setting reaction of brushite cement was studied, and was found to speed up the cement setting reaction. The cement paste set into a hard ceramic material within 18.5 ± 2.1 min and had compressive strength similar to that of spongeous bone (48.9 ± 5.9 MPa in dry conditions and 12.7 ± 1.5 MPa in humid conditions). The combination of collagen with citric acid revealed an interesting synergistic effect on the compressive strength of the composite material. Moreover, this new biomaterial had excellent cohesion properties (ninefold better than brushite cement), and high cellular adhesion capacity (threefold higher than brushite cement). The composite biomaterial described in this study combines good handling properties, compressive strength, cohesion and cell adhesion capacity, along with the osteoconductive and biodegradable properties inherent in brushite and in collagen-based biomaterials.

Keywords
Cell adhesion; Cohesion; Calcium phosphate cement; XRD; Brushite
First Page Preview
Brushite–collagen composites for bone regeneration
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 4, Issue 5, September 2008, Pages 1315–1321
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us