fulltext.study @t Gmail

Friction and wear behavior of ultra-high molecular weight polyethylene as a function of polymer crystallinity

Paper ID Volume ID Publish Year Pages File Format Full-Text
1572 86 2008 10 PDF Available
Title
Friction and wear behavior of ultra-high molecular weight polyethylene as a function of polymer crystallinity
Abstract

In this study the friction, wear and surface mechanical behavior of medical-grade ultra-high molecular weight polyethylene (UHMWPE) (GUR 1050 resin) were evaluated as a function of polymer crystallinity. Crystallinity was controlled by heating UHMWPE to a temperature above its melting point and varying the hold time and cooling rates. The degree of crystallinity of the samples was evaluated using differential scanning calorimetry (DSC). A higher degree of crystallinity in the UHMWPE resulted in lower friction force and an increase in scratch resistance at the micro- and nanoscales. On the nanoscale, the lamellar structure appeared to affect the observed wear resistance. Reciprocating-wear tests performed using a microtribometer showed that an increase in crystallinity also resulted in lower wear depth and width. Nanoindentation experiments also showed an increase in hardness values with an increase in sample crystallinity.

Keywords
Total joint replacements; Ultra-high molecular weight polyethylene (UHMWPE); Crystallinity; Friction; Wear
First Page Preview
Friction and wear behavior of ultra-high molecular weight polyethylene as a function of polymer crystallinity
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 4, Issue 5, September 2008, Pages 1401–1410
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us