fulltext.study @t Gmail

Lipid substitution on low molecular weight (0.6–2.0 kDa) polyethylenimine leads to a higher zeta potential of plasmid DNA and enhances transgene expression

Paper ID Volume ID Publish Year Pages File Format Full-Text
1623 87 2011 9 PDF Available
Title
Lipid substitution on low molecular weight (0.6–2.0 kDa) polyethylenimine leads to a higher zeta potential of plasmid DNA and enhances transgene expression
Abstract

Cationic polymers are desirable gene carriers because of their better safety profiles than viral delivery systems. Low molecular weight (MW) polymers are particularly attractive, since they display little cytotoxicity, but they are also ineffective for gene delivery. To create effective carriers from low MW polymers palmitic acid (PA) was substituted on 0.6–2.0 kDa polyethylenimines (PEIs) and their efficiency for plasmid DNA (pDNA) delivery was evaluated. The extent of lipid substitution was dependent on the lipid/PEI feed ratio and the polymer MW. While the hydrodynamic size of the polymer/pDNA complexes (polyplexes) increased or decreased depending on the extent of lipid substitution, the ζ potential of the assembled complexes was consistently higher as a result of lipid substitution. Lipid substitution generally increased the in vitro toxicity of the PEIs, but it was significantly lower than that of the 25 kDa branched PEI. The in vitro transfection efficiency of the lipid-substituted polymers was higher than that of native PEIs, which were not at all effective. The delivery efficiency was proportional to the extent of lipid substitution as well as the polymer MW. This correlated with the increased uptake of lipid-substituted polyplexes, based on confocal microscopic investigations with FITC-labeled pDNA. The addition of chloroquine further increased the transfection efficiency of lipid-substituted PEIs, indicating that endosomal release was a limiting factor affecting the efficiency of these carriers. This study indicates that lipid substitution on low MW PEIs makes their assembly more effective, resulting in better delivery of pDNA into mammalian cells.

Keywords
Non-viral gene delivery; Cationic polymers; Polyethylenimine; Hydrophobic modification; Transfection
First Page Preview
Lipid substitution on low molecular weight (0.6–2.0 kDa) polyethylenimine leads to a higher zeta potential of plasmid DNA and enhances transgene expression
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 7, Issue 5, May 2011, Pages 2209–2217
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us