fulltext.study @t Gmail

High-throughput screening for enhanced protein stability

Paper ID Volume ID Publish Year Pages File Format Full-Text
16532 42507 2006 5 PDF Available
Title
High-throughput screening for enhanced protein stability
Abstract

High thermostability of proteins is a prerequisite for their implementation in biocatalytic processes and in the evolution of new functions. Various protein engineering methods have been applied to the evolution of increased thermostability, including the use of combinatorial design where a diverse library of proteins is generated and screened for variants with increased stability. Current trends are toward the use of data-driven methods that reduce the library size by using available data to choose areas of the protein to target, without specifying the precise changes. For example, the half-lives of subtilisin and a Bacillus subtilis lipase were increased 1500-fold and 300-fold, respectively, using a crystal structure to guide mutagenesis choices. Sequence homology based methods have also produced libraries where 50% of the variants have improved thermostability. Moreover, advances in the high-throughput measurement of denaturation curves and the application of selection methods to thermostability evolution have enabled the screening of larger libraries. The combination of these methods will lead to the rapid improvement of protein stability for biotechnological purposes.

First Page Preview
High-throughput screening for enhanced protein stability
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Current Opinion in Biotechnology - Volume 17, Issue 6, December 2006, Pages 606–610
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us