fulltext.study @t Gmail

Comparison of two methods of fatigue testing bone cement

Paper ID Volume ID Publish Year Pages File Format Full-Text
1666 88 2010 10 PDF Available
Title
Comparison of two methods of fatigue testing bone cement
Abstract

Two different methods have been used to fatigue test four bone cements. Each method has been used previously, but the results have not been compared. The ISO 527-based method tests a minimum of 10 samples over a single stress range in tension only and uses Weibull analysis to calculate the median number of cycles to failure and the Weibull modulus. The ASTM F2118 test regime uses fewer specimens at various stress levels tested in fully reversed tension–compression, and generates a stress vs. number of cycles to failure (S–N) or Wöhler curve. Data from specimens with pores greater than 1 mm across is rejected. The ISO 527-based test while quicker to perform, provides only tensile fatigue data, but the material tested includes pores, thus the cement is closer to cement in clinical application. The ASTM regime uses tension and compression loading and multiple stress levels, thus is closer to physiological loading, but excludes specimens with defects obviously greater than 1 mm, so is less representative of cement in vivo. The fatigue lives between the cements were up to a factor 15 different for the single stress level tension only tests, while they were only a factor of 2 different in the fully reversed tension–compression testing. The ISO 527-based results are more sensitive to surface flaws, thus the differences found using ASTM F2118 are more indicative of differences in the fatigue lives. However, ISO 527-based tests are quicker, so are useful for initial screening.

Keywords
Bone cement; Fatigue; Wöhler analysis; Weibull analysis; Biomechanics
First Page Preview
Comparison of two methods of fatigue testing bone cement
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 6, Issue 3, March 2010, Pages 943–952
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us