fulltext.study @t Gmail

Real-time measurements of coagulation on bacterial cellulose and conventional vascular graft materials

Paper ID Volume ID Publish Year Pages File Format Full-Text
1687 88 2010 6 PDF Available
Title
Real-time measurements of coagulation on bacterial cellulose and conventional vascular graft materials
Abstract

The search for a functional, small diameter (<5 mm) vascular graft has been ongoing for over 30 years, but yet there is no consistently reliable synthetic graft. The primary mechanisms of graft failure are intimal hyperplasia, poor blood flow and surface thrombogenicity. Bacterial cellulose (BC) became therefore a proposed new biosynthetic vascular graft material. Since conventional methods are not suited for coagulation measurements on BC, we have adapted the automated calibrated thrombin generation method for measurements of biomaterial-induced coagulation of BC as compared with clinically used graft materials i.e., expanded poly(tetrafluoroethylene) (ePTFE) and poly(ethyleneterephtalat) (PET). We have also visualized the coagulation propagation at the material surfaces. Thrombin generation experiments revealed dramatic differences between the materials tested. Both ePTFE and BC were found to generate longer lag times and ttpeak values than PET. Most importantly, BC was found to generate the lowest “peak”, indicating a slower coagulation process at the surface. These results are also supported by the measurements of factor XIIa generation and analysis of surface coagulation times, which were detected in the following increasing order (mean ± SD): PET (27 ± 8 min) < BC (46 ± 9 min) < ePTFE (61 ± 21 min). Real-time measurement of coagulation seems to have the potential for becoming a powerful tool for evaluation of biomaterials for blood-contacting devices.

Keywords
Bacterial cellulose; Blood compatibility; Plasma coagulation; Fibrin formation; Thrombin generation
First Page Preview
Real-time measurements of coagulation on bacterial cellulose and conventional vascular graft materials
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 6, Issue 3, March 2010, Pages 1125–1130
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us