fulltext.study @t Gmail

Enzyme catalytic nitration of aromatic compounds

Paper ID Volume ID Publish Year Pages File Format Full-Text
16921 42622 2015 10 PDF Available
Title
Enzyme catalytic nitration of aromatic compounds
Abstract

•Water–organic two-phase system is successfully applied in enzymatic nitration.•Aromatics containing group of NH2 or OH could be nitrated by enzyme catalysis.•Ortho and para positions of benzene ring were the favored enzymatic nitration sites.•Enzymatic nitration products distribution was similar to that of chemical nitration.

Nitroaromatic compounds are important intermediates in organic synthesis. The classic method used to synthesize them is chemical nitration, which involves the use of nitric acid diluted in water or acetic acid, both harmful to the environment. With the development of green chemistry, environmental friendly enzyme catalysis is increasingly employed in chemical processes. In this work, we adopted a non-aqueous horseradish peroxidase (HRP)/NaNO2/H2O2 reaction system to study the structural characteristics of aromatic compounds potentially nitrated by enzyme catalysis, as well as the relationship between the charges on carbon atoms in benzene ring and the nitro product distribution. Investigation of various reaction parameters showed that mild reaction conditions (ambient temperature and neutral pH), plus appropriate use of H2O2 and NaNO2 could prevent inactivation of HRP and polymerization of the substrates. Compared to aqueous–organic co-solvent reaction media, the aqueous–organic two-liquid phase system had great advantages in increasing the dissolved concentration of substrate and alleviating substrate inhibition. Analysis of the aromatic compounds’ structural characteristics indicated that substrates containing substituents of NH2 or OH were readily catalyzed. Furthermore, analysis of the relationship between natural bond orbital (NBO) charges on carbon atoms in benzene ring, as calculated by the density functional method, and the nitro product distribution characteristics, demonstrated that the favored nitration sites were the ortho and para positions of substituents in benzene ring, similar to the selectivity of chemical nitration.

Keywords
HRP, horseradish peroxidase; NBO, natural bond orbitalAromatic compounds; Nitration; Horseradish peroxidase; Enzyme catalysis
First Page Preview
Enzyme catalytic nitration of aromatic compounds
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Enzyme and Microbial Technology - Volumes 73–74, June 2015, Pages 34–43
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us