fulltext.study @t Gmail

Micromechanics and ultrastructure of pyrolysed softwood cell walls

Paper ID Volume ID Publish Year Pages File Format Full-Text
1716 89 2010 7 PDF Available
Title
Micromechanics and ultrastructure of pyrolysed softwood cell walls
Abstract

Pyrolytic conversion causes severe changes in the microstructure of the wood cell wall. Pine wood pyrolysed up to 325 °C was investigated by transmission electron microscopy, atomic force microscopy and nanoindentation measurements to monitor changes in structure and mechanical properties. Latewood cell walls were tested in the axial, radial and tangential directions at different temperatures of pyrolysis. A strong anisotropy of elastic properties in the native cell wall was found. Loss of the hierarchical structure of the cell wall due to pyrolysis resulted in elastic isotropy at 300 °C. The development of the mechanical properties with increasing temperature can be explained by alterations in the structure and it was found that the elastic properties were clearly related to length and orientation of the microfibrils.

Keywords
AFM; Anisotropy; Nanoindentation; Wood; Pyrolysis
First Page Preview
Micromechanics and ultrastructure of pyrolysed softwood cell walls
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 6, Issue 11, November 2010, Pages 4345–4351
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us