fulltext.study @t Gmail

Evaluation and modelling the utility of SCCO2 to support efficient lipase mediated esterification

Paper ID Volume ID Publish Year Pages File Format Full-Text
17292 42657 2011 7 PDF Available
Title
Evaluation and modelling the utility of SCCO2 to support efficient lipase mediated esterification
Abstract

Supercritical fluids offer environmental advantages over chemical solvents, while providing enhanced separation and chemical selectivity. The use of supercritical fluids for the recovery of products from biomass and the transformation of selected molecules (to add value) was studied. Free fatty acids were bio-catalytically transformed to fatty acid esters using lipase within a supercritical fluid environment. A central composite rotatable design was used to evaluate the influence of operating conditions on the enzymatic esterification process and a response surface equation was optimized to identify the most favourable process conditions for maximum free fatty acid conversion. Based on the model equation the process conditions under which it was predicted a yield of 100% esters could be obtained were: pressure 200 bar, temperature 60 °C, ethanol concentration 2.0 M, enzyme concentration 11 wt.% and time 60 min. Experiments conducted under these conditions gave an ester yield of 94.3% (close to predicted results). The activity per unit mass of biocatalyst was found to be 1585 μmol/min/gcat. The results support the use of supercritical fluids for process integration.

Keywords
Lipase; Esterification; Hydrolysis; Supercritical CO2; Response surface methodology
First Page Preview
Evaluation and modelling the utility of SCCO2 to support efficient lipase mediated esterification
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Enzyme and Microbial Technology - Volume 49, Issue 4, 10 September 2011, Pages 420–426
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us