fulltext.study @t Gmail

Engineering the central pathways in Lactococcus lactis: Functional expression of the phosphofructokinase (pfk) and alternative oxidase (aox1) genes from Aspergillus niger in Lactococcus lactis facilitates improved carbon conversion rates under oxidizing c

Paper ID Volume ID Publish Year Pages File Format Full-Text
17432 42668 2012 6 PDF Available
Title
Engineering the central pathways in Lactococcus lactis: Functional expression of the phosphofructokinase (pfk) and alternative oxidase (aox1) genes from Aspergillus niger in Lactococcus lactis facilitates improved carbon conversion rates under oxidizing c
Abstract

The present work describes a novel central pathway engineering method that has been designed with the aim to increase the carbon conversion rates under oxidizing conditions in L. lactis fermentations. The nisin producer L. lactis ATCC11454 strain has been genetically engineered by cloning a truncated version of the phosphofructokinase gene (pfk13), along with the pkaC, encoding for the catalytic subunit of cAMP-dependent protein kinase, and the alternative oxidase (aox1) genes of A. niger. Functional expression of the above genes resulted in enhanced PFK activity and the introduction of AOX activity and alternative respiration in the presence of a source of heme in the substrate, under fully aerobic growth conditions. The constructed strain is capable of fermenting high concentrations of glucose as was demonstrated in a series of glucostat fed-batch fermentations with glucose levels maintained at 55, 138 and 277 mM. The high maximum specific uptake rate of glucose of 1.8 mM s−1 g CDW−1 at 277 mM glucose is characteristic of the improved ability of the microorganism to handle elevated glucose concentrations under conditions otherwise causing severe reduction of PFK activity. The increased carbon flow through glycolysis led to increased protein synthesis that was reflected in increased biomass and nisin levels. The pfk13–pkaC–aox1-transformant strain's fermentation at 277 mM glucose gave a final biomass concentration of 7.5 g/l and nisin activity of 14,000 IU/ml which is, compared to the parental strain's production levels at its optimal 55 mM glucose, increased by a factor of 2.34 for biomass and 4.37 for nisin.

► The work describes a novel central pathway engineering method for Lactococcus lactis. ► The method involves cloning and expression of the phosphofructokinase and alternative oxidase genes from Aspergillus niger. ► The carbon conversion rates under oxidizing conditions in L. lactis fermentations increased.

Keywords
Lactococcus lactis; Phosphofructokinase; Glycolysis; Respiration; Nisin
First Page Preview
Engineering the central pathways in Lactococcus lactis: Functional expression of the phosphofructokinase (pfk) and alternative oxidase (aox1) genes from Aspergillus niger in Lactococcus lactis facilitates improved carbon conversion rates under oxidizing c
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Enzyme and Microbial Technology - Volume 51, Issue 3, 10 August 2012, Pages 125–130
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us