fulltext.study @t Gmail

Thin PTFE-like membranes allow characterizing germination and mechanical penetration competence of pathogenic fungi

Paper ID Volume ID Publish Year Pages File Format Full-Text
1754 90 2008 10 PDF Available
Title
Thin PTFE-like membranes allow characterizing germination and mechanical penetration competence of pathogenic fungi
Abstract

Investigating the penetration behavior of pathogenic fungi often fails because natural substrata vary significantly with respect to morphological and microstructural properties. To establish in vitro penetration assays, reproducible production of thin membranes with defined properties such as thickness, mechanical and chemical stability, roughness and hydrophobicity is essential. In this paper we describe the fabrication and characterization of membranes mimicking plant surfaces with respect to hydrophobicity and report on penetration assays with plant pathogenic fungi known to exert enormous force during the infection process. In order to reach high hydrophobicity, polytetrafluoroethylene-like membranes were used. By varying membrane thickness, the penetration competence of different pathogens could be evaluated and quantified. In addition, a relationship between surface roughness in the nanometer scale and the germination rate has been observed.

Keywords
Polymer thin films; Artificial membranes; PTFE-magnetron sputtering; Pathogenic fungi; Fungal penetration
First Page Preview
Thin PTFE-like membranes allow characterizing germination and mechanical penetration competence of pathogenic fungi
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 4, Issue 6, November 2008, Pages 1809–1818
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us