fulltext.study @t Gmail

Mechanistic investigations of lipase-catalyzed degradation of polycarbonate in organic solvents

Paper ID Volume ID Publish Year Pages File Format Full-Text
17576 42680 2011 9 PDF Available
Title
Mechanistic investigations of lipase-catalyzed degradation of polycarbonate in organic solvents
Abstract

The biodegradation of an engineering thermoplastic, poly (bisphenol-A carbonate) (BPAPC), was carried out using three different lipases from Candida antarctica (CAL), Candida rugosa (CRL) and porcine pancreas (PPL) in water-miscible (tetrahydrofuran) and water-immiscible (chloroform) solvents for 10 days. The degradation was monitored by gel permeation chromatography and Fourier transform infrared spectroscopy. Maximum degradation (ca. 60% reduction in Mn) of BPAPC was observed in THF with PPL when compared to the control without the enzyme. The degradation products in all the experiments were bisphenol-A and 4-α-cumyl phenol suggesting that the lipases act through an end-chain scission on the polymer. The degradation of BPAPC in THF was in the order of PPL > CAL > CRL, while in CHCl3 it was CRL > CAL > PPL. To understand this disparity, and to probe the mechanistic aspects of degradation, molecular dynamics investigations were performed on the lipases with model BPAPC in both the solvents. The results also suggested that catalytic triad (Ser, His, Asp/Glu) was involved in the hydrolysis of carbonate bond leading to release of bisphenol-A. These data provide us the basic understanding of the degradation mechanism and a novel methodology for degrading polycarbonate.

Keywords
Biodegradation; Bisphenol-A; Lipases; Molecular dynamics; Organic solvents; Polycarbonate
First Page Preview
Mechanistic investigations of lipase-catalyzed degradation of polycarbonate in organic solvents
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Enzyme and Microbial Technology - Volume 48, Issue 1, 5 January 2011, Pages 71–79
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us