fulltext.study @t Gmail

Carrier-bound and carrier-free penicillin acylase biocatalysts for the thermodynamically controlled synthesis of β-lactam compounds in organic medium

Paper ID Volume ID Publish Year Pages File Format Full-Text
17821 42698 2008 6 PDF Available
Title
Carrier-bound and carrier-free penicillin acylase biocatalysts for the thermodynamically controlled synthesis of β-lactam compounds in organic medium
Abstract

Different carrier-free and carrier-bound penicillin acylases were evaluated in the thermodynamically controlled enzymatic synthesis in organic medium of deacetoxycephalosporin G (using phenylacetic acid and 7-amino-deacetoxycefalosporanic acid) used as a model reaction system. Stability of all biocatalysts was determined in a strong (dioxane) and a moderately weak cosolvent (diglyme) to select the best biocatalysts and reaction medium for performing synthesis. Diglyme was selected as cosolvent, while cross-linked enzyme aggregates with polymeric microenvironment (CLEAs-DP) and glyoxyl agarose immobilized penicillin acylase (GAPA) were selected as biocatalysts to perform the thermodynamically controlled synthesis of deacetoxycephalosporin G at different concentrations of cosolvent. Half-lives of CLEA-DP and GAPA were 666 h and 71 h, respectively, being their activities similar (242 and 254 IU/g, respectively). At the best conditions (70% diglyme), conversion yields were closer to 90%. Productivities of CLEA-DP and GAPA were 2.80 mM/h and 2.54 mM/h, respectively. Stability of both biocatalysts during synthesis was tested in sequential batch reactor operation being significantly higher for CLEA-DP where no reduction in equilibrium conversion was observed after four sequential batches. Higher stability also reflected in higher productivity.

Keywords
CLEAs; Penicillin acylase; Thermodynamically controlled synthesis; Organic cosolvents; β-Lactam antibiotics
First Page Preview
Carrier-bound and carrier-free penicillin acylase biocatalysts for the thermodynamically controlled synthesis of β-lactam compounds in organic medium
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Enzyme and Microbial Technology - Volume 43, Issue 6, 6 November 2008, Pages 442–447
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us