fulltext.study @t Gmail

Phosphonate degradation in microorganisms

Paper ID Volume ID Publish Year Pages File Format Full-Text
18223 42714 2006 6 PDF Available
Title
Phosphonate degradation in microorganisms
Abstract

In most microorganisms studied to date, utilisation of phosphonate is induced under conditions of inorganic phosphate limitation, and the enzymes of phosphonate catabolism are encoded by orthologous genes. Four phosphonate breakdown pathways are known which differ in their substrate specificity and cleavage mechanisms. The degradation of phosphonates by common microbial pathogens belonging to 22 microbial species grown in phosphate-rich media was investigated employing nuclear magnetic resonance spectroscopy and bioinformatic searches. Fifteen bacterial and four fungal species were capable of cleaving phosphonate (C–P) bonds of α-aminomethylphosphonate, phosphonoacetate or phenylphosphonate, indicating that the enzymes responsible for these activities are expressed in the absence of phosphorus limitation. In silico analyses indicated that most of the microorganisms with phosphonate degradation activities did not have genes orthologous to those encoding C–P cleaving enzymes of the classical phosphonate catabolism pathways. The results suggested that phosphonate degradation in some bacteria and fungi, including human and animal pathogens, took place via novel pathways. These metabolic characteristics can be exploited to design potent antimicrobial pro-drugs bearing phosphonate moieties that would be cleaved off when taken up by microorganisms releasing the active drug.

Keywords
Phosphonate; Microorganisms; Enzyme activity; Degradation
First Page Preview
Phosphonate degradation in microorganisms
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Enzyme and Microbial Technology - Volume 40, Issue 1, 6 December 2006, Pages 145–150
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us