fulltext.study @t Gmail

Responses of bone-forming cells on pre-immersed Zr-based bulk metallic glasses: Effects of composition and roughness

Paper ID Volume ID Publish Year Pages File Format Full-Text
1823 91 2011 11 PDF Available
Title
Responses of bone-forming cells on pre-immersed Zr-based bulk metallic glasses: Effects of composition and roughness
Abstract

Bulk metallic glasses (BMGs) demonstrate attractive properties for potential biomedical applications, owing to their amorphous structure. The present work has investigated the biocompatibility of Zr-based BMGs by studying the cellular behavior of bone-forming mouse MC3T3-E1 pre-osteoblast cells. A Ti–6Al–4V alloy was used as a reference material. Pre-immersion treatment was performed on BMG samples in phosphate-buffered saline prior to cell experiments. The effects of 1 at.% yttrium alloying and surface roughness on cellular behavior were examined. The general biosafety of Zr-based BMGs for MC3T3-E1 cells was revealed as normal cell responses. Pre-immersion treatment was found to effectively reduce the surface concentrations of alloying elements. Micro-alloying with 1 at.% yttrium did not significantly affect cell adhesion and proliferation, but slightly decreased alkaline phosphatase (ALP) activity on rough surfaces. Lower cell adhesion and proliferation were found on smooth surfaces of Zr-based BMGs compared to their rougher counterparts. Higher ALP activity was detected on rougher surfaces. To obtain a mechanistic understanding surface free energy was correlated with cell adhesion.

Keywords
Bulk metallic glass; Biocompatibility; Pre-immersion; Surface roughness; Osteoblast
First Page Preview
Responses of bone-forming cells on pre-immersed Zr-based bulk metallic glasses: Effects of composition and roughness
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 7, Issue 1, January 2011, Pages 395–405
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us