fulltext.study @t Gmail

Chitosan scaffolds incorporating lysozyme into CaP coatings produced by a biomimetic route: A novel concept for tissue engineering combining a self-regulated degradation system with in situ pore formation

Paper ID Volume ID Publish Year Pages File Format Full-Text
1861 93 2009 9 PDF Available
Title
Chitosan scaffolds incorporating lysozyme into CaP coatings produced by a biomimetic route: A novel concept for tissue engineering combining a self-regulated degradation system with in situ pore formation
Abstract

This study describes an innovative self-regulated degrading material with gradual in situ pore formation ability for bone tissue engineering applications. This approach is based on the incorporation of the lysozyme enzyme into calcium phosphate (CaP) coatings, prepared on the surface of chitosan scaffolds by means of a biomimetic coating technique with the aim of controlling their degradation rate and subsequent formation of pores. However, because lysozyme has antibacterial properties, these coatings may act as a carrier for its sustained release, preventing infection upon implantation. In order to prove the concept of in situ pore formation, the coated scaffolds (with and without lysozyme) were incubated in two different solutions at different pH to simulate normal physiological conditions (pH 7.4) and inflammatory response (pH 5). The weight loss and morphology of the scaffolds was monitored over time. At pH 7.4, the scaffolds remained more stable than at pH 5. The scaffolds incubated at pH 5 showed a rapid decrease in their initial weight, and scanning electron microscopy imaging revealed the formation of a highly porous structure. Furthermore, evaluation of the activity of the incorporated lysozyme revealed that the enzyme was able to hydrolyse the peptidoglycan of the bacteria cell walls (as detected by the decrease in optical density with time), indicating that the enzyme remained active after being incorporated into the CaP coating.

Keywords
Chitosan; Cap coatings; Lysozyme; Degradation; In situ pore formation
First Page Preview
Chitosan scaffolds incorporating lysozyme into CaP coatings produced by a biomimetic route: A novel concept for tissue engineering combining a self-regulated degradation system with in situ pore formation
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 5, Issue 9, November 2009, Pages 3328–3336
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us