fulltext.study @t Gmail

Surface modifications of photocrosslinked biodegradable elastomers and their influence on smooth muscle cell adhesion and proliferation

Paper ID Volume ID Publish Year Pages File Format Full-Text
1924 95 2009 12 PDF Available
Title
Surface modifications of photocrosslinked biodegradable elastomers and their influence on smooth muscle cell adhesion and proliferation
Abstract

Photocrosslinked, biodegradable elastomers based on aliphatic polyesters have many desirable features as scaffolds for smooth muscle tissue engineering. However, they lack cell adhesion motifs. To address this shortcoming, two different modification procedures were studied utilizing a high and a low crosslink density elastomer: base etching and the incorporation of acryloyl-poly(ethylene glycol) (PEG)-Gly-Arg-Gly-Asp-Ser (GRGDS) into the elastomer network during photocrosslinking. Base etching improved surface hydrophilicity without altering surface topography, but did not improve bovine aortic smooth muscle cell adhesion. Incorporation of PEG-GRGDS into the elastomer network significantly improved cell adhesion for both high and low crosslink density elastomers, with a greater effect with the higher crosslink density elastomer. Incorporation of GRGDS into the high crosslink density elastomer also enhanced smooth muscle cell proliferation, while proliferation on the low crosslink density unmodified, base etched, and PEG-GRGDS incorporated elastomers was significantly greater than on the high crosslink density unmodified and base etched elastomer.

Keywords
Biodegradable elastomer; Photocrosslinking; Surface modification; RGD; Base etching
First Page Preview
Surface modifications of photocrosslinked biodegradable elastomers and their influence on smooth muscle cell adhesion and proliferation
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 5, Issue 7, September 2009, Pages 2429–2440
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us