fulltext.study @t Gmail

Influence of ohmic heating on rheological and electrical properties of reconstituted whey solutions

Paper ID Volume ID Publish Year Pages File Format Full-Text
19430 43064 2009 9 PDF Available
Title
Influence of ohmic heating on rheological and electrical properties of reconstituted whey solutions
Abstract

Reconstituted whey solutions (in the range of 8–24% w/v solute concentrations) were heated from 20 °C to prescribed temperatures (30, 40, 50, 60, 70 or 80 °C) ohmically by applying voltage gradients of 20, 30 or 40 V/cm, and conventionally at water bath. Electrical conductivity changes with increasing temperature were linear during ohmic heating. Whey solutions have non-Newtonian characteristics since Herschel–Bulkley model satisfactorily fitted the experimental shear stress–shear rate data. “n” values were in the range of 0.520–1.503. The whey solution having 24% concentration had a yield stress of 0.006–0.024 Pa at low temperatures. Although temperature and concentration were critical factors for the consistency and the electrical conductivity changes during heating (p < 0.01), the voltage gradient was not effective statistically. The high correlation (between −0.910 and −0.991) was obtained between changes of electrical conductivity and consistency coefficient values during ohmic heating. Since activation energies for ohmic heating (26.34–45.79 kJ/mol) depending on solute concentration were lower than conventional heating (26.70–50.04 kJ/mol), reconstituted whey solutions were less sensible to temperature changes during ohmic heating. It was recommended that ohmic heating could be applied as a faster alternative heating method in the whey processing.

Keywords
Ohmic; Rheology; Electrical conductivity; Whey
First Page Preview
Influence of ohmic heating on rheological and electrical properties of reconstituted whey solutions
Publisher
Database: Elsevier - ScienceDirect
Journal: Food and Bioproducts Processing - Volume 87, Issue 4, December 2009, Pages 308–316
Authors
,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering